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Abstract

An asymptotic analysis is given of the compressible, laminar
boundary-layer flow of a dilute gas-particle mixture over a semi-infinite
flat plate. The analysis extends existing work by considering more
realistic drag and heat-transfer relations than those provided by Stokes. A
more general viscosity-temperature expression is also incorporated into the

- analysis. The solution involves a series expansion in terms of the slip
parameter of the particles. The numerical results, including the zeroth and
first-order approximations for the gas and particle phases, are presented
for the two limiting regimes: the large-slip limit near the leading edge
and the small-slip limit far downstream. Significant effects on the flow
produced by the particles with Stokes' and non-Stokes' relations are studied
and clarified. The effects of some nondimensional similarity parameters,
such as the Reynolds, Prandtl and Eckert numbers, on the two-phase
boundary-layer flow are discussed.
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Notation

a, coefficient in Eqs. (5.4) and (5.20)

a2  coefficient in Eq. (5.4)

bi  coefficient in Eqs. (5.5) and (5.21)

b2  coefficient in Eq. (5.5)

cI  coefficient in Eqs. (5.6) and (5.22)

c2  coefficient in Eq. (5.6)

C p specific heat of a gas at constant pressure

cs  specific heat of a particle material

cv  specific heat of a gas at constant volume

CD drag coefficient for a sphere in viscous flows

CDo Stokesian drag coefficient for a sphere in viscous flows

d particle diameter

V. D normalized drag coefficient

Dx x-coinponent of the drag force per unit volume acting on the
gas

Dy y-component of the drag force per unit volume acting on the
gas

Ec gas Eckert number based on freestream temperature

f transformation function for gas velocity

f p transformation function for particle velocity

F(I) first-order function defined in Eq. (3.34)

k heat conductivity of a gas

M Mach number

Nu Nusselt number based on particle diameter

p gas static pressure

Pr gas Prandtl number

V



4w rate of heat transfer at the wall

Q total heat transfer per unit volume to gas from particles

R gas constant

Rep particle Reynolds number based on freest eam velocity and
particle diameter

Res  slip Reynolds number based )n particle slip velocity and
particle diameter

Re, flow Reynolds number based on freestream velocity and
velocity-equilibrium length

S Sutherland constant

T gas static temperature

T p particle temperature

Ts  temperature defect between gas and particles

u x-component of gas velocity

up x-component of particle velocity

us  x-component of particle slip velocity

U(1)  first-order velocity of gas, defined in Eq. (3.35)

v y-component of gas velocity

Vp y-component of particle velocity

vs  y-component of particle slip velocity

x horizontal coordinate along the wall

y vertical coordinate normal to the wall

Greek Symbols

a ratio of specific heats of two phases

P mass loading ratio of particles

y ratio of specific heats of gas

6 boundary-layer displacement thickness

n similarity variable for boundary-layer solutions

vi



first-order temperature of gas, defined in Eq. (3.36)

velocity-equilibrium length

dynamic viscosity of gas

v kinematic viscosity of gas

p density of gas phase

pp density of particle phase

Ps density of particle material

'v velocity-equilibrium time

TT temperature-equilibrium time

w shear stress at the wall

dissipation function due to the relative motion of
particles in a gas

I@p stream function for particle phase

*Subscripts

w wall conditions

freestream conditions

o reference values

Superscripts

* dimensional quantities

(0) zeroth-order quantities

(1) first-order quantities

first-order derivative with respect to similarity variable

N.)

second-order derivative with respect to similarity
variable n

modified properties for gas-particle mixture
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1.0 INTRODUCTION

1.1 Motivation for the Present Study

Gas and solid-particle flows are encountered in many different fields.
Typical examples occurring in nature are dust storms, forest-fire smoke and
the dispersion of solid pollutants in the atmosphere. Many processes in
industry utilize gas-particle flows, such as transportation of pulverized
materials in pneumatic conveyors, separation and classification of particles
in cyclone or other separators, fluidization in chemical reactors, and

combustion of powdered fuels in combustion chambers. In addition, gas flows
with suspended solid particles have various applications in science and

engineering, for example, satellite drag, ablation, MHD generators, solid
propellant rockets, laser-Doppler anemometry and blast waves moving over the
Earth's surface.

For some applications in pipe or nozzle flows and 'lows over bodies,
the behaviour of such two-phase flows at a solid surface is extremely

important. Hence, it is necessary to study boundary-layer flows of a
gas-particle mixture. From solutions of gas boundary-layer equations, it is
possible to determine the effects of solid particles on the boundary-layer
characteristics, say, shear stress, heat transfer and boundary-layer

growth.

The problem considered in this report is the laminar boundary-layer

flow over a semi-infinite flat plate in a compressible gas containing
uniform, spherical solid particles. This study provides basic physical
insight into the flow of such a two-phase system, even though the solution
is for a relatively straightforward problem. Moreover, as a parallel study,
the asymptotic solution can be used to compare with finite-difference

solutions and to verify independently the correctness of the

finite-difference scheme [I].

1.2 Previous Work

Several authors have worked on the problems of two-phase boundary-layer
flows. Most of these analyses were based on the assumption of an

incompressible fluid [2-16]. Singleton [17] first treated the case of a
compressible dusty-gas boundary-layer flow. He derived the governing
equations and obtained asymptotic solutions for two limiting regimes: the
large-slip regime near the leading edge and the small-slip regime far
downstream. However, he assumed Stokes' relation for the drag force and

heat transfer, which is valid only for the case where the particle slip
Reynolds number is of order unity. He developed his governing equations
assuming that the gas viscosity-temperature relation has the special form of

1*/'* = VT*/T*, and gave his solutions for the case where the Prandtl and
Eckert numbers of the gas are equal to unity.
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1.3 Present Study

The present analysis will extend Singleton's analysis to the more
general problem of compressible laminar dusty-gas boundary-layer flows over
a semi-infinite flat plate. It will present the basic equations under
conditions that the drag and heat transfer Ibetween the two phases may have
different relevant forms instead of Stokes' relation and that the power
index in the expression for the viscosity coefficient c;n have arbitrary
values from 0.5 to 1.0. The paper will give the numerical results in the
two limiting regions at several values of the Prandtl number, Eckert number,
Reynolds number and the viscosity power in je<.

1.4 Basic Assumptions

The basic assumptions are as follows:

(1) The gas is perfect. The specific heats of the gas are constant. The
Prandtl number of the gas is constant. The viscosity and heat
conductivity of the gas have a power-law relation with the gas
temperature.

(2) The solid particles are rigid spheres of uniform size. The number
density of particles is sufficiently high to treat the particle phase
as a continuum. However, the particles are also sufficiently dilute to
consider them as non-interacting.

(3) The particles have no random motions and therefore the particle phase
does not contribute to the static pressure of the two-phase system.

(4) The volume fraction of the particle phase is assumed as negligible.
* This implies that the coefficient of viscosity for the gas-particle

mixture can be taken as the viscosity of the gas phase alone.

(5) The specific heat of the particle material is constant. Its thermal
conductivity is much larger than that of the gas and hence the
temperature inside each particle can be assumed uniform.

(6) There is no radiative heat transfer from one particle to another.
There is no chemical reaction, no coagulation, no phase change in the
two-phase system. There is no particle deposition on the surface of
the plate.

(7) Only the processes of drag and heat transfer couple the particles to
the gas. The drag coefficient and the Nusselt number for a single
sphere in a viscous flow are assumed valid for the particle cloud.
Other force interaction terms, such as lift, buoyancy and gravity, are
neglected.

2
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(8) There is no dry friction as the particles slide along the wall. The
slowing down of the particle motion is only due to the gas whose
velocity decreases to zero at the wall.

(9) The two-phase flow is steady. The flow Reynolds number is sufficiently
high so that a laminar boundary-layer forms on the surface of the flat
plate, but lower than a critical value so that no transition to
turbulence occurs.

(10) The usual boundary-layer assumptions are still valid for the two-phase
system and consequently the variation of pressure across the boundary
layer can be neglected. In addition, for the flat-plate problem, there
is no pressure gradient in the external flow. The particle phase and
gas phase in the external flow are in equilibrium.

2.0 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

2.1 Governing Equations

Let x* and y* be the distance along and normal to the wall,
respectively. The origin is fixed at the leading edge of the plate. The
geometry of the problem is sketched in Fig. 1. The conservation equations
for steady two-dimensional laminar boundary-layer flows of a compressible
gas-particle mixture over a semi-infinite flat plate are as follows:

For the gas phase:

Continuity:

6 p*u* + k1. p'v* = 0 (2.1)
()x* by*

Momentum:

p*(u* au_* + v* u*) - ( , *)+ Dx (2.2)

-6x* by* )y*

Energy:
pc*u* 6T* + v* 6T*) k (k* ) + 2.

(k. + ) + Q (2.3)
ox* 6y* )*y* 6y* (

State:

p* = p*R*T* (2.4)

3



For the particle phase:

Continuity:

x- u + v = 0 (2.5)

x-momentum:

P(u* _P + v =k) = -Dx (2.6)px* p y*

y-momentum:

p*(u* 'P + v* =v) -Dy (2.7)Px * Pay*

Energy:

*P sPFX ~ c (u* -a + V* MP. -Q (2.8)

In Eqs. (2.1)-(2.8), the interaction terms between the gas and
particles can be expressed by (see Appendix):

U*- U*

Dx = p* P D (2.9)
p V

V* - V*

Dy = p* P D (2.10)
lp T*

(u*- u*)Dx + (v* - v*)Dy (2.11)

Q = P * - T* Nu
lp s tt 2(2.12)

where

CDOD (2.13)

4'

V .. 
a ~ ~ ***% .-. . .



CD = 24 (2.14)

-p d*2  (2.15)
18 *

12k* c: (2.16)

Here, D represents the real drag coefficient CD normalized by the

Stokesian drag coefficient C0 o and Nu is the Nusselt number based on the
particle diameter. According to the assumption (7), D and Nu determine the

gas-particle interaction. When the interaction law between the gas and

particles just has the Stokes form, D = 1.0 and Nu = 2.0. It is well known

that the Stokes relation is valid only for small slip Reynolds number of
order unity. In general, D and Nu are both functions of the Reynolds number

and Prandtl number. From the definition of slip Reynolds number and Prandtl

number,

p*/(u* - U*) 2 + (V* - v*) 2 d*Re-4 (2.17)

C*

Pr = _ (2.18)

The local equilibrium-time parameters, c and 4, are a measure of the

relaxation process. For example, the velocity equilibrium time - is the
time elapsed for a particle to reduce its relative velocity to e- of its
original value if the force accelerating (or decelerating) the particle

toward the gas velocity is given by the Stokes drag. These two local
parameters are functions of the local gas temeprature since the viscosity
coefficient p* and the heat conductivity k* are functions of the gas

temperature. It is convenient to introduce an equilibrium length X,*, which

is based on the freestream parameters:

8 - d u* (2.19)
184*

The two-phase relaxation process takes place throughout the equilibrium

length. Therefore, it is reasonable to choose X,* as the characteristic
length of the dusty-gas boundary-layer problem. Then the equilibrium-time
parameters can be expressed in the form

5



(2.20)

rt 3Pr S 2.1
2 C* ~L 2.1

Thus, the basic boundary-layer equations (2.1)-(2.8) become

a p*Uj* + -L- ..p*v* = 0 (2.22)

pi (* !L + v* 6u* ) = .- _ (4* - L-) + (U* u*) -*I 0 (.3
ax Y* y* by* P p ~ (223

(y* PrT + * +~

pp

X* 3Py Pr pj* 6y

p* *) p* (2.25)Ut L

+ pp * D*+ . 0(.6
C* p p iikp

+ __ p*(T -(u*- u* Nu!~ (2.27)

a v* u2 D(* * (2.28)
* P * P(*

av* *

U* -p.+ v*~~P a ~(T* - T*) ~1Nu (2.29)
P ax* p aY* 3Pr P 1(

6



where a is the ratio of specific heats of the two particles:

a = P (2.30)c*

For boundary-layer flows, the normal component of velocity is usually a

small quantity. It means that the contribution of the normal velocity is

often neglected compared with the tangential velocity. Then, the expression

for the slip Reynolds number, Eq. (2.17), becomes

p*Iu* - u*Id*
Res = (2.31)

and the gas energy equation (2.24) reduces to

P _ ( + v ~) = L +~*~* j PK*)
_ X -y*T Pr by* by* c* 6y

pp*u T x- T +v T)y r )y u** - T * u* *c  _

+ -I (u* - u*)2 u* * D + L (T* - T*) u * Nu (2.32)
C* P 3Pr PX*

In order to obtain a closed set of equations, it is required to specify

the expression for 4*(T). From the standpoint of kinetic theory of gases,

the most exact relation for the viscosity of a perfect gas is Sutherland's

form [18]:

* T+ S* T* 3/2 (2.33)

T*S* o*

where S* is the Sutherland constant. This form of Sutherland's relation,
however, is not suitable for the series-expansion method which is used in

the present analysis. The other viscosity form used in many analytical

solutions to the boundary-layer equations is of power form, which is written

as

(* (2.34)

7



where w is the power index which lies between 0.5 and 1.0. This relation
for the gas viscosity is readily applied to the series-expansion method, as
shown later.

From the basic assumption (10), the pressure is constant throughout the

boundary layer:

p* = constant (2.35)

With this condition (2.35) and the gas state equation (2.25), the gas
density can be expressed in terms of the gas temperature:

p# = T * (2.36)

p# T*

Substituting Eq. (2.36) into the basic equations (2.22), (2.23),
(2.26)-(2.29) and (2.32) with the power relation for the gas viscosity
(2.34), the following equations are obtained:

* b * + av*) = u* 6T* + v* 6T* (2.37)

U*b* xau * Uy**xu * + v* _
* ; v.(T*) _ [(T*)w 8] + (u* u*) u* (T*i D

-= y T ya p- (T - (2.38)

u* T* +v* -T* _V* (T*) 2 [(T* )" T*] + v* T* * Au* 2

xy* Pr T, y T*" y* cp " -

+ P2 (u* - u* ) 2  u* T* )w.1 1 _ T T* ) u * (T *.) l
X + P + 2. 1 * Nu (2.39)

3Pr T

x P; u* + v* = 0 (2.40)

u* -P + v* -_ (u* - u*) - ( (2.41)
P Ox p ay* p TXc T*CD

8



v+ v* = -(v - v*) U *)w D (2.42
P bx* P Sy* pX,

uv + v P T - (T* - T*) u T- Nu (2.43)

Fx* P by* 3Pr P T"

Under the conditions of w 0.5, D = 1.0 and Nu = 2.0, the equations
(2.37)-(2.43) reduce to those derived by Singleton [17].

Physically, the boundary-layer flow-field of a two-phase mixture can be
divided into three distinct regions (see Fig. 1). These regions are divided

according to the nondimensional slip parameter x*/X* as follows: the
large-slip region (x*/X* << 1), the moderate-slip region (x*/X. - 1), and
the small-slip region (x*/X* >> 1). Following Singleton [17], a

small-parameter expansion method was used to solve the boundary-layer
equations for dusty gases. Only the asymptotic solutions in the two
limiting regimes can be obtained by this perturbation technique: the
large-slip approximation for the near leading-edge solution and the
small-slip approximation for the far-downstream solution, respectively.
Clearly, the large-slip regime is characterized by a frozen flow where the

gas and the particles move independently, while the small-slip regime is
characterized by an equilibrium flow where the gas and the particles move
together (see Fig. 2).

2.2 Boundary Conditions

The boundary conditions for the gas phase are:

(1) At the wall, there is neither slip in velocity nor jump in

temperature:

u*(x*, 0) = 0, v*(x*, 0) = 0, T*(x*, 0) = T* (2.44)

(2) As y* approaches infinity, the flow parameters must match those in the
external flow or the freestream:

u*(x*, -) = ut, T*(x*, D) = T* (2.45)

The boundary conditions for the particle phase are:

(1) At the wall, there is no mass transfer

9



0v(x*, O) = 0 (2.46)

(2) As y* approaches infinity, the flow parameters must match their
freestream values:

u*(x*, -) U* , T*(x*, *) Tp, P*(x*, -) = P* (2.47)

Since the particles and gas are assumed to be in equilibrium in the external
flow, the freestream parameters for the particle phase can be readily
determined as

u* = ut,, = T*, p= P (2.48)
P. P. p

where 0 is the mass loading ratio of the particles. Otherwise, the
two-phase external flow must be solved first in order to obtain the outer

4 boundary conditions for the particle phase if the particles are not in
equilibrium with the gas in the freestream.

3.0 LARGE-SLIP APPROXIMATION

3.1 Transformation of Boundary-Layer Equations

-For the large-slip region, it is convenient to define a stream function
Sp for the particle phase:

prp up 'P = (3.1)

Pp*=~P - (3.2)p P x*

Then the continuity equation for the particle phase, Eq. (2.40), is
satisfied automatically.

In this region, the following nondimensional flow variables and
function transformation are chosen:

.1

. p4 l



x/ Y* (3.3)X* / V* Xx : , - 2v*®x*

u* 2x* v*, T p (3.4)u= , v *c* T* p*

f -nu p (3.5)

*,X *

Pp , Tp T  (3.6)
P p P= = T*

P~*

=(3.7)

With Eqs. (3.1)-(3.3) and (3.5)-(3.6), the particle velocities can be

expressed as

p pp b) n

v=k* ppc~ .x 2x2P4 - (3.8)

V* V2vt ut x* 1 bf a

p Pp 6x 2 x 2x by(.9

Substituting the above expressions, the basic equations (2.37)-(2.39)
and (2.41-(2.43) are transformed into the following form:

T (AL + u L I =u -T f 6T (3.10)
x 2x 2x o ax 2x -3.

u -u f i L T () (Tw Wu)+ 3T(L1(6p ppu)D (3.11)
6x 2x 6) 2x - N n.1

4 11



au + u i a)f 2 T T0 a)+E T() '  2D
-1 (Tw 6T )+I w(- ) + Ec - - ppU

ax 2x 2x 3n 2xPr brn T 2x bnpp n

+ L PpTw(Tp - T)Nu (3.12)
3Pr

Pp 2f (2f f 6P a
~ PpC -x -. (-- - 2x =g)]fa~n ox bn 2x br 2 6) ox 2x bn

- (,P+ LE .. T, L (E-Pp _ _ _
ox 2x 2x 3n 6T2 an on

( (3.13)

p ap

bf f 1 bf f 2f

P TI 6X 2  X ax 4x 2  2x U3x71 4x 2 
6TI

+ (2!k 6p - E. 5Pp!RR + - L

an ax 6x byn 2x 6TI ax 2x 2x 6

(fp + .) 2 f 2ffp_)
-___It_) pp2 T W(R + f I (f__2f_ = p2r('+LE-_T E + _a_ fp pp )D

P 3x xabn 2x ),2 2x 2x on 2x ppU -2x
(3.14)

fp TE _Tp ( - ppT(Tp - T)Nu (3.15)

; bx n ax 2x 3Pr

where Ec is the gas Eckert number based on the freestream temperature,

u*2

Ec = C (y - I)M. 2  (3.16)

3.2 Expansion in Terms of the Slip Parameter (x*/X*)

The following expansion in terms of the slip parameter (x*/X,*) is

made:

12



f(x, n) f(O)(n) + xf(1 )(.i) +

u(x, rn) u(O)(n) + xu(1)(7) +

T(x, n) T(O)(r) + xT( 1 )(n) + ... (3.17)

fp(x, T f(p + xf p)(n) +

Tp(x, n) = T(O)(n) + xT(1 )(n) +

pp(x, n) p(O)(n) + xpl)(n) +
p p

Putting the expansion (3.17) into Eqs. (3.10)-(3.15) and equating
coefficients of (x)n where n = o, 1, ... , the zeroth and first-order
equations for the large-slip limit are obtained as follows.

The zeroth-order problem is:

f(O)' - T(0 ) f(O) - u(0 ) = 0 (3.18)
T(0)
T, (O)

u(0) + (f(O) + T(0)' )u(0 )' = 0 (3.19)
T(O) (&I T _O

T(O),,+ f(O) + wT(O) )T(0) + Ec Pr (u (0)' )2 0( .0

T(O) +  T(0 )

f(O) = (3.21)

T(O) = 1 (3.22)

p
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P(O 1 (3.23)

with the boundary conditions

f~(O) )=0 u(0)(0)= 0; u()- 1; T(0)(O) =Tw; T(O)(-)= 1 (3.24)

f~0 )(O) =0. f(. ) =1; ()'-~

p( ()- (0)(-) = 1 (3.25)

In fact, the equations for the particle phase, (3.2l)-(3.23) , are algebraic
expressions which represent the zeroth-order solution for the particles.
The boundary conditions (3.25) were already used in Eqs. (3.2l)-(3.23).

The first-order problem is

f(l)' _ T(O)' f(1) - 3uI + (2u(0) + T(O~f0)T 1  ()T 1 0)

T(0 ~T(O) T() T(O) (3.26)

UM1+ () + W r(0)')u(1). - 2 u 1O u(l)-c*) f(O )u(O)'

T()T(O) T(O) T(+

+ T0 (O) 'L ] (1 ) + 61 T( O) I( ) + u O) f+ l

-2 P(1 - u ())D (3.27)

TO"+ (Pr f() + 2w T(O)' )T(W) - [(&*1I)Pr + W (C)'

()* ]T() TE~ ~(O)'ulr 0 ' fl

+2Pr __ ]T1___cru)u' + Pr fl

-2f3EcPr(1-u(0  JD - 20(i T(O) )Nu (3.28)

3
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TI2 -~ 2,lp( 1  n (1) 3f (1) 2T( 0 )(- - f ( 0 ) )D (3.29)
pp p p

In2 3nf (1) + 3f(l1 -2T(0 )'rnj(0 ) -f (0 ) D (3.30)

TTl.- 2T( 1 ) 2a TP (O)w(r(O) - I)Nu (3.31)

where the normalized drag coefficient D and the Nusselt number Nu are given
by their zeroth-order approximations. The boundary conditions are:

f~')(0) =0; u(1 )(0) = 0; u(,)(-) = 0; T(l)(0) = 0; T(1)(-) =0 (3.32)

f~l)(0) = 0; f(l)(-) = 0; T~(),- 0; P( 1 )(_) = 0 (3.33)
p p p ' p

From the first-order approximate equations, Eqs. (3.26)-(3.31), it is
seen that the loading ratio of the particles p appears oly in the equations
for the gas phase, i.e., Eqs. (3.26)-(3.28). In addition, it is possible
to yet a more general solution which is suitable for any value of the
loading ratio, by introducing the new variables:

T)-f(l) ( n)I/ (3.34)

u~'~(n)- u()(T)/p(3.35)

(1)(r) - ( 1~(~)/p(3.36)

Substituting the expressions (3.34)-(3.36) into Eqs. (3. 26) -(3. 28) , the
first-order equations for the gas phase become

F(1)' - T(1 FM = 301) - (2u(0 ) + T~0 (O) 202) (1 f(O) (1). (3.37)
T (0) T(O) T(0 f T(O)

U1 + fO)W+ + __ u (0))UI' W1
+ \ T + FOF U T(U) u~)Continued
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[(wI) f(O+u(OT_(+ ) u(0)' (1) - (O)' E(1)

T(O)w 2  T() 2  T (0 )

- u(O)'F(1) - 2(1-u(0))D (3.38)

T (T) ( 1)'

E (1) + (Pr f(O) + 2w() (1) - [(.+l)Pr f(O)T(O)- +
T(O) ft) *2

+ 2Pr u(O)  E)(1)

- -2EcPr(u(O)'u (I) ' ) - Pr T(0)' FM 2EcPr(l-u(O))2D _ 2 (IT(O))Nu
•)', TO 3 r ~ F 1  iTO N

T (3.39)

Similarly, the boundary conditions (3.32) take the form

SF(I)(o) = 0; U(1)(0) = 0; U(1)(-) =1  0 ; E)(1)(0) = 0; 8)(1)() = ?3.40)

3.3 First-Order Problem and Interaction Terms

00;From Eqs. (3.18)-(3.23) and (3.26)-(3.31), it is found that the
interaction terms between the gas and particles appear only in the
first-order approximation. In other words, the zeroth-order equations can
be solved without knowing the interaction relation between the two phases.
However, in order to obtain the first-order solution, appropriate
expressions for the drag and heat transfer between the two phases should be!i!!given.

As mentioned before, when solid particles move through a gas at very
low relative velocities, that is, when Res < 1, the Stokesian form can be
applied. For the case where Stokes' relation applies, then D = 1.0 and
Nu = 2.0. When the relative, or slip, velocities between the particles and
the gas increase to a higher value, Stokes' relation is not valid.
Therefore, a relevant form for the interaction should be assumed for the
non-Stokesian case. In the case of larger slip velocities, it may be

16
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reasonable to apply the following drag and heat-transfer relations
[19, 20]:

C0 = 0.48 + 28 Res 0 " 8 5  (3.41)

Nu = 2.0 + 0.6 Pr1/3 Res 1/2 (3.42)

The drag coefficient CD and Nusselt number Nu for the non-Stokesian
case in this analysis, given by Eqs. (3.41) and (3.42), are functions of the
slip Reynolds number Res as well as the Prandtl number Pr. Comparing the
non-Stokes and the Stokes relations indicates that these two cases are in
agreement only for the slip Reynolds number of order unity or less. As the
slip Reynolds number becomes larger than unity, the Stokes relation
underestimates the drag and heat-transfer between the gas and the particles.
In general, the non-Stokes relation agrees with the standard drag curve [21]
much better than the Stokes relation. Correspondingly, the normalized drag
coefficient is

D Re + Z Re 0.15 (3.43)
50 6 s

In the series-expansion method, the slip Reynolds number Res should be
expanded just as the other quantities. Neglecting the first-order small
quantities, the slip Reynolds number can be expressed as

Re= Re I - u (0 )  (344)PT( 0 ) U+ 1  (.4

where Rep is the particle Reynolds number based on the freestream velocity

pt u* d*
Re = (3.45)

The zeroth-order approximations for D and Nu can be obtained by
substituting Eq. (3.44) into Eqs. (3.42) and (3.43). Then the first-order
equations can be solved numerically. The equations for the yas phase, Eqs.
(3.26)-(3.28), consist of second-order, ordinary-differential, simultaneous
equations with two-point boundary values, similar to the case of the
zeroth-order equations for the gas phase. The solution to the equations for
the particle phase, Eqs. (3.29)-(3.31), can be obtained in the integral
form:

17



p(1) = -2n 2 f (x - f(0) )Ddx - 2f (( 0 ) - f(O) )Ddx
xo 4h  C X 4

f T(0) xu( 0 ) - f(O) )Ddx (3.46)

f 1)..3.n2 f I ( xu(0) f(O) )Ddx + f T(O) (xu(O) - f(O))Ddx
p x4  ( x2  (3.47)

f(l) = _13 f I0 (xu(O) - f(O) )Ddx + Y f r) T2 (xu( 0 ) - f(O) )Ddx
x D 

O x2  
(3.48)

2a f1n T=.02 (T(O) - 1)Nu dx (3.49)3p Pr x

The quantity f(l)' df()/dn, given by (3.47), can be used to give the

p p ,gie

fir t-order approximation ofthe tangential velocity for the particle phase,
UM1 .  From Eq. (3.8), the x-component of particle velocity can be given by
the derivative of the transformation function fp(n):

Up : 1 fp (3.50)p p anl

In addition, in the large-slip limit, the nondimensional density of the
p ricle phase, p, is of order unity since the zeroth-order solution is
pp 0 = I, i.e., Eq. (3.23). Substituting Eqs. (3.17), (3.21) and (3.23),
Eq. (3.50) yields the series-expansion form as

up =1 + x(fC1 )' - PMl) )+* (3.51)
pp p

4 Clearly, the first and second terms in Eq. (3.51), represent respectively
the zeroth and first-order approximation of the tangential particle velocity
u P*



4.0 SMALL-SLIP APPROXIMATION

4.1 Basic Equations in Terms of Slip Quantities

For the small-slip region, it is convenient to employ slip quantities

as dependent variables since they are small quantities of first order with
respect to the slip parameter (kt/x*). The slip quantities are defined as

u* = u* - u*, v* = v* - v*, T* = T* - T* (4.1)
s p s p s p

Putting Eq. (4.1) into the basic equations (2.37)-(2.43) and making

some algebraic manipulation results in

T. (* + bv*= u* 61* + v* 6T* (4.2)
-x* by - bx by -

-bu vu* ,, . v , u* P.P + v* = Q (43)

P*(-S +-s+_ +6 p* -6p* +U p+V 43

by* b xy* 6x* by* x* by*

u * u*u* b uu uu
U 6 + v* +*-- v* + u+* + v*P** s y* & * 'y*- s 5- vs by*

+ (1 + P )(u* +V u* t) [(IT* -w u* = (44)
px* 6y p* oy* T, by*

Ju* +v* bu* * bu u* bu * _ [ (T_)W J* ]

a x* y x* by* S y* pS Ey* , y*

u + u T* cw *  
(4.5)= t 0- IT' p. Us

u y+ vb 64* u* - bv* * a *U L +-, v* s+ u* + v* _+,. *
s x* 6y* bx* 6y* 6 y x* y

Continued
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u* T Wv s(4.6)

p~c*" - Ts- 5 s

_____ , v _

ax* y* O* y* )

+ (1 + -*u 3T* + v* 6TT*) + T u 2_p c xy* Pr p* *y* "T* y* cS p T ";y
u 6 * 6T.x,.* 4 7

u* C* FJ* * y - *

Z -" ' . ~~ ~ ~~ * 6 (T* '  )T] W IT* .*2

= _ __ ~~~u* (T )~. 2- u* (L (TIT 48

*c b-* T Pr p* by Cp bT-y cs * * b

sml-l p rein

- *, us (T.7

P* *. T ~ * s~;

Pr p*' + u* * p Tc* T, 6T*

u* T v* + u* ST +* T*

20 2

", "

-T U* ()"u2 _ 2 U (1 + fpil") (T* )WT* (4.8)
p** * T* 3Pr X* p* c* T*

The conditions of D =1.0 and Nu =2.0 are already employed in Eqs.
(4.2)-(4.8), since the slip velocities are always small quantities in the
small-slip region.

4.2 Transformation of Basic Equations

Let

u v,~ 2(1+p)x* v*, T T* P p* T (4.9)

20



s U*' vs = 2(1i0)x* v*, Ts  L p _L (4.10)

and

2* / *Xx= (--, q: 2 ux y* := - v (4.11)

(4.12)

As in the large-slip limit, substituting Eqs. (4.9)-(4.12) into Eqs.

(4.2)-(4.8), the dimensionless basic equations can be obtained:

T 2 + u T - T f -u T + L -T 0 (4.13)
x 2x 2x )n x 2x 3n

.Us _ s 1 Vs au u I + P -
_j + s  - us

2x )n 2x n x 2x 2x ) Tx 2x 6n

6- u = - : 0 (4.14)2x 3) U) 2x 3Tn

aU T uU T) u LS + uUs- i

appT u s  _- u u s + u+ s us -

Us 2x 3n 2x 3n ax 2x 3tl ax 2x l

vs  s (_ f L A -' 'TL (T u) 0 (4.15)

+ s-~ + (1 + P )(
2x -1 p N 2x )n 2x 3T 1 n

_ s u + s f Js + u t q u s

x 2x 3n 2x n x 2x3n U 2x n

+ + - ) = -11+0pT)T' s  (4.16)
2x )n 2x )T " Tp
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T v _ s vs "s v svs

u~ ~~ Uu -- 2 - nq- f +-- L f  f + us Sus -D- + ss

ax ax 2x 2x bn 2x OTI Sx 2x byn 2x n 2x

+ s U f 2 + n bu-ff +u L4 f -n +Lx 2x us A + x u L - - uus (4.-x 2x a xn 2x 2x 2x 2x T

Vs Vf + u (= -T s  (4.17)
2x bq ax 2x TP 6n

SuT u L+ T + u('T s - L T-*+u OT++u - + 2) ( 4.1

oxx S TX an

x 2-x san- 2x 6-n ax 2x on ax

Vs -- )T +T ( + {pp T) (u 61 fL kT)- + T -L (T W-

2x 2r xx 2x 6- Pr 2x 6n

-Ec+P T"l (b )2 = Ec PppT)T'lus2 (4.18)

Us T_ _us T + _V T+ u .!- - f- Ua s __ Vs ST 2-s f ST TsT-s + Vs Ts
ax 2x b--l 2x a)n Ox 2x b'n o)x 2x s-r-) 2x byl

+ 1+p3 T a (Tw OT) + Ec !+1P T4'*'I(_ILI) 2

2x TPr , ' T) CY 2x b'n

= ECop pTulu s2 _ 2 ( + ppT) TOTS (4.19)
3Pr

4.3 Expansion in Terms of the Slip Parameter (X ./x*)

In the small.-slip lilmit, perturbation expansions are made in terms of
X /x* :

f(x, n)) = f (0)(i) + I f(1)(1) +x

22



u(x, TI) = u(0)(T) + ! u(1)Cn) +
x

T(x, T)= r(O)( ) + I T(1 )(n) +
X

Us(x, T) = Iu Us () + ... (4.20)
x

Vs (x, T) v ) .+x

Ts(X, n) 1T (1  ) +
x

p(x, n)= p (0) 1 -- ) pp () +

where x = x*/,* is the nondimensional slip parameter.

Then, the small-slip approximation for the zeroth-order problem leads
to

f(O) _ T(O)' f(O) - u(O) = 0 (4.21)
T(O)

U(O)" + + +(' +W T(O)' u(O) = 0 (4.22)
T(O)" + 1  T(0 )

"_ _ _ __ _ _ T(0  ) T(0)' (0 )

T(O) + (Pr 1 + P/ f(O) + .T )T(  + EcPr(u 2) 0 (4.23)1+ P T( 0 ) +I  T( )

(0) =( (4.24)
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with the boundary conditions

f(O)(o) = 0; u(0 )(o) = 0; u(O)(-) = 1; T(O)(0) = Tw; T(O)(-) = 1

(4.25)

For the small-slip approximation, the zeroth-order solutions of the particle

velocity and temperature are the same as those for the gas and the
first-order solutions are given by the first-order slip quantities. The
zeroth-order density for the particle phase is given by Eq. (4.24). The
boundary condition for the particle phase density

P (0, ) (4.26)

has been used during the derivation of Eq. (4.24).

The first-order equations for f(l), u( 1 ), T( 1 ) and p(1) are given by

S., ),uOl ( ) f O I ' u 1

f(l) _ T(O)' f(1) : T(O)' f(O)T(1) + 2 U,+ _- T -

(0T(O) T()2 TO T(O) (4.27)

u(1),,+ f(O) + WT(O)WT(O) u(1), + 2u(O) (1)

T(O) w 1 T(O)

I [(0)2U(O) _ 2 f(O)u(0)u(O) + ( f-) f(O) (0)u(O)

I T(O) * 2T(O)' T(O)w T(O)

f(O 0 1) f f(O)u(O)' (T(1)+ T(O)p I ) )

TO)2 T(O)t.+ 2  T(0)

TM + (Pr 1 + f(O) + 2 w)(0) T (0) + [2Pr 1 + B/au(O)
-+P T(O)I w+1 1+B

Continued
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-rw(l + P/ a) + 1 T(')' f(O) - ]
+0 T() T(0)1- T(0 )0+

-Pr O/C 1 [nu( 0),T( 0 ). . (~()() + 3(2w-1)Pr/ax-2 f_____2_T()_1_

9Pr f(0)u(0 )T(0 )' + 3Pr 2 1 + P/, f(0)3 T(0)'+ 3EcPr 2 f_____2_____

a- T(0) "1 a 1+0 T (0) 2t4la T(0 )w

-EcPr 0 f (0) 2U(0) , - Pr 1 + P/a T(O). f(l) - Pr _ /a f(0)T(0 )' (1)

- 2EcPr(u( 0),u( 1) ) (4.29)

f(0) p(1)' 2uO + T(O, ____(I

f(0)u(0), rmj(O)u(O)' + -2 f( 0)u( 0 )T(O) 0) _______ -_2

T(O) (*1 ()W1 2 T(O w- TO L

+ J~[Pr 1 + P/ f(O)Tr(0 ' + EcOr(u(O). ) 2  f (0) 2  *- w41 O _______

2 1+0 (),l T(O) u 2  2 T0'+

+ f(O)T(O) TM - 2 u(0) TM1  f(') T~l). (4.30)

T(O)' () T( 0)2

with the boundary conditions

f(1 )(O) 0 ; u(l)(Q) =0; u(l)(-) 1; T(l)(0) =0; T(l)(,,) =0

(4.31)
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The first-order problem in the small-slip limit is determined by the
second-order, ordinary-differential, simultaneous equations with two-point
boundary values. In this aspect, it is similar to the first-order problem
in the large-slip limit. But the solution to the above equations
(4.27)-(4.30) is difficult to obtain, since these equations are too complex
and have high coupling. In addition, Eq. (4.30) has a singular point at n =

0 Moreover, al lqinted out by Singleton [17], regard ess of the choice of
u I ) (0) and T (0), the resulting solutions to u((ii) and T (1)n) from
Eqs. (4.28) and (4.29) always approach zero as n approaches infinity, making
it impossible to pick out the correct solutions. Therefore, in this
analysis, it was not attempted to obtain the first-order solutions to Eqs.
(4.27)-(4.30) but just the zeroth-order solutions to Eqs. (4.21)-(4.24)
which are of more practical interest. The first-order problem for the
particle velocity and temperature are readily obtained. With the series
expansion (4.20), the slip quantities of first order are given as

1.
.-,,(1) f(O)u(O)

us = fT(u~w (4.32)

v (1) = 1 (r(O)2 + Tf(O)u(O) - f(O)u(O) - T(0 ) f(0) 2  (4.33)

s 2T(O)w T(0)

TO) -(i) f(O)T(O)'

s 4a TO)") (4.34)

Equations (4.32)-(4.34) are not differential but 1 ebraic equations. The
values of three slip quantities us ' vs and T - at any given point are
determined from the zeroth-order solutions for the gas phase.

5.0 RESULTS AND DISCUSSIONS

The zeroth and first-order equations for the large-slip and small-slip
limits can be solved numerically. They are a system of nonlinear,
second-order, ordinary-differential equations. The corresponding boundary
conditions are specified at the two end points, i.e., at the wall and the
outer edge of the boundary layer. Mathematically, it is a two-point
boundary-value problem and it can be solved by Gear's method [22].
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5.1 Large-Slip Limit

From Eqs. (3.18)-(3.20), the zeroth-order problem for the gas phase in

the large-slip limit is as simple as that for the boundary-layer flow of a
pure gas without particles. Therefore, as for the conventional viscous
flows of a pure gas, the Reynolds number, the Prandtl number, the Eckert
number and the viscosity power index are important controlling parameters in

the analysis of compressible, laminar, boundary-layer flows of a

gas-particle mixture. The numerical solutions of Eqs. (3.18)-(3.20) are
given in Figs. 3 to 5 and the influence of the parameters Pr, Ec and w on

the flow properties are shown in these figures and it is seen that their

effects are relatively small. Here, it is not necessary to discuss the
zeroth-order solutions for the gas phase in detail since it is the same as
the similarity solution for the flat-plate boundary layer of a pure gas.
Similarly, the zeroth-order solutions for the particle phase are readily

obtained. Equations (3.21)-(3.23) indicate that, in the zeroth-order
approximation, the particle motion in the boundary layer remains uniform.
All the zeroth-order flow quantities for the particle phase (density,

velocity and temperature) are the same as those in the freestream or the

external flow. This is due to the fact that both the gas and the particles

move independently of each other in the zeroth-order problem. The influence
of the particles on the flow properties is prevalent only in the first or
higher order solutions. It is a major feature of the two-phase

boundary-layer flows in the large-slip region.

Figures 6 to 8 show the first-order solutions for the gas phase, i.e.,

the solutions to Eqs. (3.37)-(3.39). They are the numerical results for the

Stokes case and the effects of Ec, Pr and w are significant this time. For

the first-order problem, the same value of the flow parameters Pr, Ec, w and
Tw were chosen as in the zeroth-order problem where Pr = 0.69-1.0, Ec

0.1-1.0, w 0.5-1.0 and Tw 0.5. For the non-Stokes case, the numerical

results with Pr = 0.69, Ec = 1.0, w = 0.67 and Tw = 0.5 are presented in

Fig. 9. They cover quite a wide range of the particle Reynolds number
(Re = 0.1-100.0) and the changes are very significant. For the particle
phase, the first-order solution can be obt3ined by numerically integrating

Eqs. (3.46)-(3.49). The results for the Stokes case with a = 1.0 are giy

in Figs. 10 to 12. It is seen hlS significant changes occur in pp and T ' j

with w, Pr and Ec and in f 1 with Pr and Ec. The results for ehe
p

non-Stokes case are shown in Fig. 13 where the changes with Rep are even

-. more significant. The computations for the particle phase is carried out

under the same conditions as those for the gas phase.

By comparing the results for the non-Stokes case with those for the

Stokes case, it is seen that the results based on the Stokes relation are
reasonable qualitatively. They present the similar tendency of variations

in the flow properties, such as velocity and temperature. However, they are

not correct quantitatively, especially for the large particle Reynolds

number, as expected. Nevertheless, this comparatively simple case of the

Stokes relation is still considered in many analyses of dusty-gas flows
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since it is useful for understanding the main characteristics of two-phase

flow phenomena.

From the solution to the first-order problem, it was found that there
exist significant differences in the first-order flow profiles between the
two phases. For instance, the first-order velocity of the gas is positive

and, while passing across the houndary layer from the outer edge to the
wall, it increases first to a maximum value and then decreases to zero (see
Fig. 7). By -ontrast, the first-order velocity of the particles is negative
and its magnitude increases monotonically from the outer edge of the
boundary layer to the wall (c.f. Fig. 11). This arises from the fact that
the mechanisms of motion for the two phases are not the same. There are two
kinds of forces exerted on the gas: the viscous force by the gas and the
drag force by the particles. For the particle phase, however, only the drag
force of the gas influences its motion. Therefore, after entering the
boundary layer at the leading edge, the gas decreases immediately its
tangential velocity from the freestream value at the outer edge to zero
velocity at the wall due to viscosity. Since the density of the particle
material is much greater than the gas density, the particles cannot
accommodate this rapid deceleration but tend to slip through the gas as they
decelerate. It takes some time for the particles and gas to adjust to an
equilibrium state. It implies that in the large-slip region near the
leading edge, the gas has small deviation from the pure-gas boundary-layer

flow while the particles have small deviation from their original state of
uniform motion in the freestream. The particles are 'frozen'. This

situation is justified by the zeroth-order solution, which represents the
complete frozen-flow limit. The relaxation process takes place throughout
the equilibrium length X*. In the meantime, owing to the slip velocity, the
drag force arises between the two phases and then the first-order flow is

induced by this gas-particle interaction. The gas is accelerated and the
particles are retarded. This is the reason why the two phases have their
first-order velocities in opposite directions. While traversing the
boundary layer from the outer edge to the wall, the slip velocity increases
and then the first-order velocity for the two phases both increase first in
the region near the outer edge, since the drag force is proportional to the
slip velocity. The first-order velocity of the particles continues to
increase in magnitude on approaching the wall, since the particle motion is
driven only by the drag force. However, for the gas phase, in the region
near the wall where the velocity gradient for the gas is great, the viscous

force prevails and the no-slip condition at the wall forces the gas velocity
to go to zero. Thus, the first-order velocity of the gas decreases in the
inner boundary layer and vanishes at the wall. A similar argument is valid

for the first-order temperature profil ' by employing the correspondence of
the temperature to the velocity, the heat conductivity to the viscosity and
the heat transfer to the drag force.

Finally, for boundary-layer analyses, there are three characteristic
quantities of interest: the shear stress at the wall Tj, the heat-transfer

rate at the wall 4, and the displacmeent thickness 5*. As usual, they are
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determined from the flow profiles of the gas phase:

00

by :qw = -(k* T*) b 6* = f (1 - P* u* )dy* (5.1)
W0 pt U

It is convenient to introduce the following nondimensional characteristic
quantities:

Tw R- w_ : 6* /e (5.2)

where Rex is the flow Reynolds number based on the freestream velocity u*,

and the velocity-equilibrium length X*,

Re,= P Xwc (5.3)

Then, the nondimensional boundary-layer characteristics can be expressed

as:

w = a1(1 + x"a2 + ... ) (5.4)

w= bj(1 + x~b 2 + .. ) (5.5)

6 = Vx c1(1 + x~c 2 + ... ) (5.6)

where is the nondimensional viscosity of the gas at the wall

6)

'w : W rw
(5.7)
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and the coefficients a,, a2, bl, b2, cl and c2 are given by

a, = u(0)'((), a2 = u(0 )'(O) (5.8)

T(1)'(O) (5.9)

b i = T
(0 ) '(0), b 2  = T(O)(O)(59

u ( ) " Go u (O )T (1 ) - T (O )u ( 1 ) d n 5 . 0
c= f (1 - 9-"i)dn, c2 = f (5.10)

o T(0 )  0 T(O) 2

From the above relations, it is known that the coefficients a, b, and c,

are determined only by the zeroth-order solution and that the coefficient

a2, b 2 and c 2 depend on the first-order solution as well as the zeroth-order

solution. In fact, the first three coefficients, i.e., al. b I and cl, give

the zeroth-order approximation of the three characteristics which is the

same as for the similarity solution of a pure gas. The other three

coefficients a2, b2 and c2 represent the first-order modification owing to

the presence of the particles. These coefficients can be estimated from the

numerical results using eqs. (5.8)-(5.10). In Table 1, the listed values

are the coefficients for the case where the flow parameters are Pr = 0.69,

Ec = 1.0, w = 0.67 and Tw = 0.5.

Table I

Coefficient Values for Boundary-Layer Characteristic Quantities

Stokes' non-Stokes' Case

Case
Re=0.1 Re=1.0 Re=10.0 Re=100.0

al 0.5472 0.5472 0.5472 0.5472 0.5472

a2  1.888 1.599 2.312 3.728 9.870

b 0.4382 0.4382 0.4382 0.4382 0.4382

b2  2.275 2.058 2.827 4.487 11.21

c 1  1.101 1.101 1.101 1.101 1.101

c2  -0.6672 -0.4515 -0.7152 -1.148 -2.748
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From the values given in the above table, it is seen that the shear stress
and heat-transfer rate at the wall in the case of dusty gases become greater
than those in the case of pure gases and the displacement thickness
thinner.

5.2 Small-Slip Limit

The zeroth-order equations for the gas as well as for the particles in
the small-slip limit, Eqs. (4.21)-(4.23), are similar to the conservation
equations for a pure-gas boundary-layer flow but with modified properties.
Physically, the small-slip approximation represents a quasi-equilibrium flow
and the zeroth-order problem constitutes the exact equilibrium limit where
the particles are 'fixed' to the mass of the gas so that the gas and
particles move together like a perfect-gas mixture. For the dilute
two-phase system with the approximation of negligible volume fraction of the
particles, the particles contribute to the mixture density but not to the
viscosity [23]:

(I+ P) p* (5.11)

= (5.12)

The other thermodynamic properties are given by

c= c* 1 + 3/a (5.13)

k* = k* (5.14)

Then the modified similarity parameters can be expressed as

Pr =p. = Pr 1 + 3/a (5.15)I+P
k*

Ec- c - Ec (5.16)

li..

c* T*Cp TO
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Substituting the modified Prandtl number and Eckert number into Eqs.
(3.18)-(3.20), which are exactly the same as the boundary-layer equations
for pure gases as mentioned before, the resulting 'modified' equations are
just the zeroth-order equations for the small-slip limit, Eqs.
(4.21)-(4.23). It implies that in the zeroth-order approximation, the
gas-particle mixture behaves like a pure gas with modified thermodynamic
properties. In this paper, the numerical solutions in the small-slip limit
are calculated for the condition of a = 1.0. Under this condition, the
zeroth-order equations (4.21)-(4.23) for the small-slip limit reduce to
those for the large-slip limit, Eqs. (3.18)-(3.20). The results are given
in Figs. 3-5. Clearly, in the small-slip limit, the zeroth-order velocity
and temperature for the particles are the same as the ones for the gas.
From Eq. (4.24), it is found that the nondimensional density of the particle
phase p( ) is equal to the nondimensional density of the g phase p(O) (or
the reciprocal of the nondimensional gas temperature 1/TUv). It is seen
from Fig. 14 that p(O), or p( , varies monotonically from its maximum value
at the wall to its freestream value at the outer edge. In this report, the
constant wall temperature Tw is specified as Tw = 0.5 and then the
density at the wall is equal to 2, as shown in Fig. 14. From Eqs. (4.9) and
(4.10), the densities in the dimensional form are given by

p* = p* p, p = pp* pp (5.17)

Neglecting the small quantities of first order, the above gas and particle
densities are approximated by

p, = p (0) (0)
, p(O ) = * 0 p (5.18)

pp

Therefore, at all points of the boundary layer in the small-slip region,

- =(5.19)

p *

It means that the constant loading ratio of the particles holds across the
whole boundary layer in the small-slip region. In other words, the solid
particles remain attached to their original gas mass and always move
together with this gas mass. The two-phase system behaves like a gaseous
mixture. It is a major feature of the gas-particle flow in the small-slip
region.

The slip quantities u( 1 ) , v(1) and TO1 ) are given in Figs. 15 to 17,
where the effects of the flow parameters Pr, Ec and w on the first-order
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flow of the particles are shown. In fact, the slip quantities represent the
first-order approximation for the particle phase. It is seen that the
profile of the normal slip velocity v ( 1) is different from that of the
tangential slip velocity us At the outer edge of the boundary layer, the
tangential slip velocity becomes zero but the normal slip velocity
approaches a finite value, since the boundary conditions for the tangential
and normal velocities are different in boundary-layer analyses. As in the
usual boundary-layer problems, the tangential particle velocity at the outer
edge of the boundary layer should be equal to the freestream value and then
the slip velocity should become zero at the outer edge. However, no similar
boundary conditions at the outer edge can be specified for the normal

velocity. The unique boundary condition for the normal velocity is that it
is equal to zero at the wall. Owing to the continuity equation, the normal

.velocity is induced and approaches its maximum value at the outer edge.
Therefore, the normal slip velocity at the outer edge takes a finite value
which is the difference between the normal velocities of the two phases at
the outer edge. In addition, by comparing Fig. 15 with Fig. 11, it is found

that there exist significant changes in the first-order profile for the
tangential velocity of the particles in the two limiting regions. In the
small-slip region, the particle slip velocity at the wall is equal to zero,
while in the large-slip region, the first-order velocity of the particles
has its maximum value in magnitude at the wall as mentioned earlier. As a

result of the maximum slip velocity, the interaction term between the gas
-and the particles has its maximum value at the wall and then the maximum

deceleration of the particles takes place along the wall. Hence, at some

distance from the leading edge, the particle velocity at the wall reduces to
zero and is equal to that of the gas. After this point the particles keep

their zero velocity at the wall because of the zero slip velocity. This
special point, where the particle velocity becomes zero at the wall, is
defined as the critical point for the gas-particle boundary-layer flow. At
the critical point, the dusty-gas boundary layer essentially fulfills the
transition from the quasi-frozen flow to the quasi-equilibrium flow. The
two-phase flow in the small-slip limit is a typical example of a
quasi-equilibrium flow. By comparing Fig. 17 with Fig. 12, the same
situation happens to the first-order temperature of the particles in the two
limiting regions: at the wall, the first-order temperature has its maximum
value in the large-slip region and the temperature defect vanishes in the
small-slip region. A detailed discussion is omitted here, since it is
similar to the above case of velocity. Similar to the large-slip case, it
is interesting to obtain the expressions for the boundary-layer

characteristic quantities. However, in the small-slip case, since there are
no solutions available to the first-order equations of the gas, they can be
expressed only in zeroth order. Similarly, the three boundary-layer
characteristics are given in the nondimensional form:

w = -a- (/+_a ) (5.20)
Vx
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4w (4+0b1) (5.21)
/x

6 = X (ci (5.22)

/I +

The coefficients a,, b, and c1 in Eqs. (5.20)-(5.22) have the same values as
in Table 1. By contrast with the large-slip limit, the zeroth-order
expressions for the boundary-layer characteristics in the small-slip limit,
Eqs. (5.20)-(5.22), involve the effects of the particles. In fact, the term

,/1+0 in Eqs. (5.20)-(5.22) represents the alteration of the boundary layer
by the particles. In the small-slip limit, the two-phase system acts like a
single gaseous system with modified properties as pointed out before. With
Eqs. (5.9)-(5.10), the 'modified' similarity variable 1 becomes

-/ u* , ! (l+ )U*y

1 = y* * /I+ (5.23)

2 * 2v*x*

This implies that the boundary-layer flow of a dusty gas in the small-slip
limit corresponds to a similarity solution with the normal scale modified by

the factor Y1+0, owing to the particles. Consequently, the shear stress and
heat-transfer rate at the wall increase and the displacement thickness

decreases by the same factor of /I+3. Therefore, it can be concluded that
the presence of particles enhances the shear stress and heat-transfer at the
wall and thins the boundary layer in the two limiting regions. This
tendency can be seen in Figs. 18 and 19, where the shear stress and

*heat-transfer rate are shown as functions of the nondimensional distance x
for the cases with and without particles. As expected, the results for the
large-slip limit and the small-slip limit coincide with the pure-gas results
in the limits x + 0 and x + -, respectively. Note that the large-slip

*. results when x > 0.1 and the small-slip results when x < 10 are meaningless
since the aysmptotic solutions are not valid. Physically, the changes in
the characteristics caused by the particles can be explained as follows.
The gas-flow profiles with and without particles are schematically shown in
Fig. 20. As a result of the interaction, the gas velocity and temperature

* increase in the cold-wall case (say, Tw = 0.5). Then the derivatives of
the gas velocity and temperature with respect to the normal coordinate y* at
the wall become greater than those without particles. These changes result
in an increase in the shear stress and heat-transfer at the wall, since they
are proportional to those derivatives. In addition, the boundary layer
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becomes thinner since the velocity approaches its freestream value more
quickly.

The numerical results for the asymptotic solutions using the
series-expansion method were compared with the finite-difference solutions

. in the two limiting regions. The agreement between the asymptotic solutions
and the difference solutions was excellent [1].

6.0 CONCLUDING REMARKS

Some general conclusions obtained from the asymptotic solutions of the
flat-plate boundary-layer flow of a dilute gas-particle mixture are
summarized as follows:

(1) The asymptotic solutions to the dusty-gas boundary-layer equations can
be obtained using a series-expansion method. They describe the
limiting properties of two-phase flows in the large-slip region and the
small-slip region, which are characterized by a frozen flow and an
equilibrium flow, respectively. The asymptotic solutions are in
excellent agreement with the finite-difference solutions.

(2) The interaction between the gas and particles determines the flow
properties of the particle phase, and influences strongly the flow
properties of the gas phase in addition to the viscosity. When the
particle slip Reynolds number is high, a proper expression for the drag
and heat transfer between the two phases should be specified instead of
using Stokes' relations. The results when using Stokes' relations are
reasonable qualitatively but not correct quantitatively for a Reynolds
number greater than unity.

(3) For a given gas-particle system with specified values of the mass
loading ratio and the ratio of the specific heats of the two phases,
similar to the case of high-velocity viscous flows of a pure gas, all
of the following parameters are important for the analysis of
compressible laminar boundary-layer flows of gas-particle mixtures:
Reynolds, Prandtl and Eckert numbers as well as the transport

properties (viscosity and heat conductivity).

(4) For compressible, laminar, !)oundary-layer flows of dusty gases, the
shear stress and the heat-transfer rate at the wall increase and the
displacement thickness decreases when compared with the corresponding
results for a pure gas. Owing to the presence of the particles, the
gas velocity and temperature increase on a flat-plate boundary layer
with a cold wall. As a result, the velocity and temperature gradients
at the wall for the gas phase increase so that the shear stress and
heat transfer are enhanced and the velocity achieves its freestream
value at a shorter distance from the wall so that the displacement
thickness of the boundary layer is decreased.
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APPENDIX

RELAXATION PROCESS AND VELOCITY EQUILIBRIUM TIME

In gas-particle flows, generally speaking, the gas and the particles
may have different velocities and temperatures, and as an immediate
consequence the two phases must interact. Every particle experiences a drag
force and exchanges heat with the gas. The same happens to the gas but in
the opposite direction. Consequently, the velocities and temperatures tend
to approach each other, and the instantaneous rate of this approach depends
on the instantaneous velocity and temperature differences between the
particle and the gas. This phenomenon, which is usually known as the
relaxation process, is a major feature of gas-particle flows. A discussion
of the viscous drag between the gas and the particles and of the velocity
relaxation process will illustrate the relaxation processes in a two-phase

system.
.4

For the case of a single spherical particle in a viscous flow, if the

particle velocity Up (here the unstarred quantities denote dimensional flow

properties) is different from the gas velocity U, the viscous drag exerted
by the gas on the particle depends on the relative, or slip, velocity

(Up - U). As usual in fluid mechanics, the drag F is expressed by means of
a drag coefficient CD which is defined in terms of the dynamic head of the
relative flow and the frontal area of the particle:

F = CD{ P(U -1 IU - UpI d} (A.1)

-.9
where p is the gas density and d is the particle diameter. On the
right-hand side of Eq. (A.1), the square of the relative velocity is written
in this manner to ensure that the drag force always has the correct sign.
The drag coefficient CD is a function of the particle slip Reynolds
number

CD = CD(Res) (A.2)

where Res is the slip Reynolds number based on the particle diameter

Res  PU - Up d (A.3)

A.1
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where p is the gas viscosity.

For the Stokes case, with a low-slip Reynolds number less than about
one, the drag coefficient takes the simple form

* CD = 24 (A.4),', o Res

This is the Stokes relation for the drag force. For a higher slip Reynolds
number (Res > 1), there are several empirical relations for the drag
coefficient given by different investigators. It is convenient to write

CD = CD 0 D(Res) (A.5)

.'.- or
or 

D = CD 
(A.6)

COO

"w where D is the so-called normalized drag coefficient in this analysis. It
is clear that D(Res) = 1 corresponds to Stokes' drag.

The above discussion deals only with isolated particles. Of course, if
there is an appreciable number density of particles, the effective, or
apparent, drag coefficient may be different from that for a single particle
because of some forms of interaction between the particles, such as direct
collisions and particle-wake interaction. At present, there are no adequate
analytical or experimental results available for these interactions. In
this report, the case of a dilute gas-particle mixture is considered, and it

is reasonable to assume that the drag coefficient for a single sphere is
valid for the particle cloud. Therefore, if the drag coefficient takes the
form of the Stokes relation, the drag force on every particle is

F'-= 24 {1 p(U - UpU- d2
Re. 2 - Up4

24 In 2>u .u.
p Up-Ul d! 8 p' P

3iTpd(U - Up) (A.7)
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Let np denote the number Jensity of the particles, pp the density
of the particle phase, Ps the density of the particle material and m the
mass of a particle. Then

m P . d (A.8)
6

np : = PP_ (A.9)
m . d 3

~6

The force per unit volume of the gas-particle mixture acting on the gas,

D iOx + jDy, can be given as

D =-np • F

P 3pd(U U)
"S n d 3

p p (A.10)
pV

where TV is defined as the particle velocity-equilibrium time

'T Psd 2  (A.11)

The velocity-equilibrium time Tv depends on the density of particle
material, the particle diameter and the gas viscosity. Some typical values
of the velocity-equilibrium time are given in Table 2, where the particle
material density pp = 2.5 g/cm 3 (typical of crown glass).

A.3



Table 2

Typical Values of the Particle Velocity Equilibrium Time (ms)

Gas Particle Diameter d (m)
Temperature -- IT (K) 10 20 40

300 0.755 3.02 12.08
400 0.605 2.42 9.68
500 0.510 2.04 8.16

Physically, Tv is the time required for a particle to reduce the slip
velocity to e- I of its initial value. To examine this criteria, consider a
flow field with constant gas velocity and temperature. For the particles

moving in this flow field, Newton's law of motion becomes

m -- = F (A.12)
dt

Substituting Eqs. (A.7) and (A.8), Eq. (A.12) becomes

dt m

3nd(U - U
.5 *id 3Ps

: 18 (U- Up
psd 2

+
"=" U U

(A.13)TV

A.4
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Since the gas velocity and temperature are assumed as constant, i.e., UJ and
Tv are constant, Eq. (A.13) is readily integrated with the result

t

.6 + +V

U - U U U)e (A.14)

where U Po is the initial velocity of the particles at t = 0. This result
indicates a typical velocity-relaxation process in which the slip velocity

decays exponentially. From Eq. (A.14), it is known that the velocity-
equilibrium time Tv is the time elapsed for a particle to reduce its
original relative velocity by e-1. It should be pointed out that, in fact,
the velocity relaxation process is not completed in the velocity-equilibrium

time Tv, since the slip velocity still has an appreciable value, i.e.,
about 37% of its original value. In addition, if the gas velocity and

temperature are not constant, or Stokes' drag does not apply, Eq. (A.13)
becomes more difficult to solve, and the solution is no longer a simple
exponential decay of the slip velocity, Eq. (A.14). Nevertheless, the

parameter Tv remains a convenient measure for the tendency of the

.p particles to reach velocity equilibrium with the gas.

For the non-Stokes case, the drag force on every particle is given by

+ +* + +

F CD{! p(U - Up)U - U 4 2}P

3nTEd(U - Up)D (A.15)

The drag force per unit volume exerting on the gas by the particles is

obtained as

D =-n p  F

p-

U -U
Pp 0 (A.16)

or

Dx p T D, Dy P p v .... D (A.17)
lV %V

.1A.
A.5
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where u and v are the velocity components for the gas, and uD and Vp for
the particles:

-w

+- + - 4 +.-t

U = iu + jv, Up = iu + jV (A.18)

The dissipation function due to the relative motion of the particles is

. = D * (Up - U)

(u u)Dx + (v - V)Dy (A.19)

The heat transfer from a particle to the gas has the form

q = k(imd 2) TP_. T - Nu
d

where k is the heat conductivity of the gas, Nu is the Nusselt number, and
Tp and T are the particle and gas temperatures, respectively. Then the

total heat transfer to the gas per unit volume is given by

W n p q

= P k • ndl2 -P- Nu

Ps d 3  d

: Pp 12_k (T - T) Nu

ps 2  2

- T c5  - Nu (A.20)
'T

where cs is the specific heat of the particle phase and TT is the

temperature-equilibrium time:

A.6
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T= pd2 c (A.21)

The temperature-equilibrium time -rT can be expressed in terms of the
velocity-equilibrium time 'rv:

=PSd 2 18p.c
T 18p 12k C

3 Pr C v (A.22)
2- cp

where Cp is the specific heat at constant pressure for the gas and Pr is
the gas Prandtl number:

Pr = (A.23)k

-
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FIGURE 1. SCHEMATIC OF A DUSTY-GAS BOUNDARY-LAYER OVER A SEMI-INFINITE FLAT
PLATE. REGION I: LARGE-SLIP REGION. REGION II: MODERATE-SLIP
REGION. REGION III: SMALL-SLIP REGION.
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(h) Ec =1. 0, , 0. 67 and Pr 0. 69, 0. 72, 0. 75 AND 1. 0,
RESPECTIVELY.

(c) Pr =0.69, =0.67 AND Ec 0.1, 0.4 AND 1.0, RESPECTIVELY.
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FIGURE 4. THE ZEROTH-ORDER VELOCITY u(U) FOR THE GAS PHASE.

(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY.

(c) Pr = 0.69, , = 0.67 AND Ec 0.1, 0.4 AND 1.0, RESPECTIVELY.
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FIGURE 5. THE ZEROTH-ORDER TEMEPRATURE T(0 ) FOR THE GAS PHASE.

(a) Pr = 1.0, Ec = 1.0 AND w 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY.

(c) Pr = 0.69, w = 0.67 AND Ec 0.1, 0.4 AND 1.0, RESPECTIVELY.
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FIGURE 6. FIRST-ORDER FUNCTION F(1 ) FOR THE GAS PHASE IN THE LARGE-SLIP
LIMIT FOR THE STOKES CASE.

(a) Pr - 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, w= 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECT[ VELY.

(c) Pr - 0.69, w = 0.67 AND Ec = 0.1, 0.4 and 1.0, RESPECTIVELY.
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FIGURE 7. FIRST-ORDER VELOCITY U
(
1) FOR THE GAS PHASE IN THE LARGE-SLIP

LIMIT FOR THE STOKES CASE.

(a) Pr = 1.0, Ec = 1.0 AND , = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, (w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY.

(c) Pr = 0.69, w. 0.67 AND Ec = 0.1. 0.4, AND 1.0,

RESPECTI VELY.
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FIGURE 8. FIRST-ORDER TEMPERATURE (1) FOR THE GAS PHASE IN THE LARGE-SLIP

LIMIT FOR THE STOKES CASE.

(a) Pr = 1.0, Ec I.U AND = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, w 0.67 AND Pr - 0.69, 0.72, 0.75 AND 1.0,
RESPECTI VELY.

(c) Pr 0.69, ,, = 0.67 AND Ec = 0.1, 0.4 AND 1.0, RESPECTIVELY.

WI



1.21---

1.0

0.9

0.8

0. 7

9'0.6

0.5

I. EC-O. 100
0.3 12.EC-O.4OO

7 3.EC-1.000

co-0.666

0.1 PR-O.690
(c)

0.0 1.0 2.0 3.0 4.0 S.U 6.0 7.0 8.0 9.0 10.0

FIGURE 8 - CONTINUED

-~~ .1.FE-. 100
2. RE- I. 000

) 3. RE- 10. 00
L.RE100.0

Wa-0. 663
PR-.4390
EC- I .000

I! (a)

SFIGURE 9. FIRST-ORDER SOLUTIONS FUR THE GA S PHASE IN THE LARGE-SLIP LIMIT

FOR THE NON-STOKES CASE WITH Pr = 0.69, Ec =0.b7 ANU Rep= 0.1,
1.0, 10.0 AND 100.0. RESPECTIVELY.

(a) FUNCTION F~l); (b) VEL0CIT U(') (c) TEMPERATURE



2.0

1.5 r I.RE-O. 1002.RE-1.O000

3.RE10.00 1
4. RE-100.0

U'" 1.0
4

3

W-0.666
0. -PRO.o690

EC-I.000

(b)

0.00 .0 2580 0 1.0 2 . ....0 3.0 q-0 5.0 6.0 7.0 8.0 9.0 10.0



2.0

I.RE-0. 100
1.5 ~2.RE-1.000

3.RE-10.00
4.RE-100.0

%3

8&)-0.666

z PR,,O.690
O..1, EC=l.000

(c)

. 2. ,.o q. 6. 5.0 7.2 P 1 e .P .q

FIGURE 9 - CONTINUED

Ii, sI
0 1

O. 0 :< -- . wo-0. 500

2.o)0-0.666
3. 6)-0. 770

-0. I 4.WA-1.O00

-0.2

PR-1.000

EC-1.000

-0.3 -

(a)

0 .0 n r .C 7.C E.0 r, I

FIGURE 10. FIRST-ORDER DENSITY p(1) FOR THE PARTICLE PHASE IN THE
p

LARGE-SLIP LIMIT FOR THE STOKES CASE.

(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY.

(c) Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
RESPECTIVELY.
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FIGURE 11. FIRST-ORDER VELOCITY f(l)' FOR THE PARTICLE PHASE IN THE
p

4LARGE-SLIP LIMIT FOR THE STOKES CASE.
'4

(a) Pr = 1.0, Ec = 1.0 AND w 0.5, 0.67, 0.77 AND 1.0,
RESPECTIVELY.

(b) Ec = 1.0, = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTI VELY.

(c) Pr = 0.69, ' 0.67 AND Ec 0.1, 0.4 AND 1.0,
RESPECTI VELY.
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FIGURE 12. FIRST-ORDER TEMPERATURE T(I) FOR THE PARTICLE PHASE IN THE
P

LARGE-SLIP LIMIT FOR THE STOKES CASE.

(a) Pr = 1.0. Ec 1.fl AND w 0.5, 0.67, 0.77 AND 1.0,
RESPECTI VELY.

(b) Ec - 1.0, ( ) 0.67 AND Pr 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVELY.

(c) Pr - 0.69, = 0.67 AND Ec - 0.1, 0.4 AND 1.0,
RESPECTIVELY.
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FIGURE 13. FIRST-ORDER SOLUTIONS FOR THE PARTICLE PHASE IN THE LARGE-SLIP

LIMIT FOR THE NOR-STOKES CASE WITH Pr - 0.69, Ec - 1.0, w - 0.67
AND Re~ p 0.1, 1.0, 10.0 AND 100.0, RESPECTIVELY.
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FIGURE 14. ZEROTH-ORER DE1NSITY p(O) FOR THE PARTICLE PHASE IN THE
SMALL-SLIP LIMIT.

(a) Pr = 1.0, Ec = 1.0 AND w 0.5, 0.67, 0.71 AND 1.0,
RESPECTI VELY.

(b) Ec = 1.0, w 0.67 AND Pr 0.69, 0.72, 0.75 AND 1.0,
RESPECTI VELY.

(c) Pr - 0.69, = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
RESPECTI VELY.
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FIGURE 15. TANGENTIAL SLIP-VELOCITY u 1) IN THE SMALL-SLIP LIMIT.

(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTI VELY.

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,
RESPECTIVEI Y.

(c) Pr = 0.63, w = 0.67 AND Ec : 0. 1, 0.4 AND 1.0,
RESPECTI VELY.
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FIGURE 16. NORMAL SLIP-VELOCITY IN THE SMALL-SLIP LIMIT.

(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,

RESPECTI VELY.

(b) Ec = 1.0, w = 0.67 AND Pr = 0.69, 0.72, 0.75 AND 1.0,

RESPECTI VELY.

(c) Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,

RESPECTI VELY.
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FIGURE 17. TEMPERATURE DEFECT IN THE SMALL-SLIP LIMIT.
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(a) Pr = 1.0, Ec = 1.0 AND w = 0.5, 0.67, 0.77 AND 1.0,
RESPECTI VELY.

(b) Ec = 1.0, w =0.67 AND Pr = 0.69, 0.72. 0.75 AND 1.0,
RESPECTIVELY.

(r) Pr = 0.69, w = 0.67 AND Ec = 0.1, 0.4 AND 1.0,
RESPECTIVELY.
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FIGURE 18. NONDIMENSIONAL SHEAR STRESS AT THE WALL AS A FUNCTION OF THE

NONDIMENSIONAL DISTANCE x.

- PURE-GAS SOLUTION; --- LARGE-SLIP SOLUTION FOR THE DUSTY

GAS; SMALL-SLIP SOLUTION FOR THE DUSTY GAS.
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FIGURE 19. NONDIMENSIONAL HEAT-TRANSFER RATE AT THE WALL AS A FUNCTION OF
THE NONDIMENSIONAL DISTANCE x.

- PURE-GAS SOLUTION; --- LARGE-SLIP SOLUTION FOR THE DUSTY
GAS; - SMALL-SLIP SOLUTION FOR THE DUSTY GAS.
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FIGURE 20. COMPARISON BETWEEN THE FLOW PROFILES OF THE GAS WITH AND WITHOUT
PARTICLES.

(a) VELOCITY; (b) TEMPERATURE.
WITHOUT PARTICLES; - WITH PARTICLES.
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